Home

Topologie kfz

Hybridelektrokraftfahrzeug - Wikipedi

Netzwerk-Topologie - Elektronik-Kompendiu

Wenn von Topologien die Rede ist, dann wird hierbei die Vernetzung innerhalb eines Systems gemeint, also in welcher Formatierung die einzelnen Teilnehmer untereinander verknüpft sind. Durch die jeweilige Anordnung der Teilnehmer wird ein gemeinsamer Datentausch über gleiche Leitungen geschaffen. Die Wahl der richtigen Topologie ist bei der netzinternen Kommunikation ein wichtiger Faktor, da die Entscheidung für eine bestimmte Struktur darüber entscheidet, wie hoch die Ausfallsicherheit ist. Somit ist es erforderlich, alternative Wege innerhalb einer Topologie aufzubauen, damit ausfallende Knoten keinen Effekt auf das gesamte System haben und die Datenübertragung dennoch ohne große Unterbrechungen weiterlaufen kann.J1939 ist ein auf CAN basierendes Protokoll im Nutzfahrzeugbereich. Es wird von der Society of Automotive Engineers (SAE) gepflegt. Eine Einführung in J1939 findet sich in Application Note Introduction J1939[5]

DurchmesserBearbeiten Quelltext bearbeiten

Die Topologie eines Rechnernetzes beschreibt die spezifische Anordnung der Geräte und Leitungen, die ein Rechnernetz bilden, über das die Computer untereinander verbunden sind und Daten austauschen.. Es wird zwischen physikalischer und logischer Topologie unterschieden. Die physikalische Topologie beschreibt den Aufbau der Netzverkabelung; die logische Topologie den Datenfluss zwischen den. Ein Teilnehmer kann Empfänger und Sender von Nachrichten mit beliebig vielen Identifiern sein, aber umgekehrt darf es zu einem Identifier immer nur maximal einen Sender geben, damit die Arbitrierung funktioniert.

Topologie (Rechnernetz) - Wikipedi

  1. Der Sender wiederholt nach dem Error-Frame seine Datenübertragung. Auch der Sender kann durch die zuvor erwähnten Fehlerzähler vom Bus getrennt werden, wenn die Datenübertragung dauerhaft fehlschlägt. Verschiedene Fehlerfälle führen zu einer unterschiedlich großen Erhöhung des Fehlerzählers.
  2. In zunehmendem Umfang werden inzwischen auch Sensoren (z.B. Lenkwinkelsensor) und Aktoren (z.B. Wischermotor VW) mit Prozessoren ausgerüstet, um die Daten aufzubereiten. Wenn die Daten solcher intelligenter Komponenten direkt auf das Bussystem gelangen, belasten sie die Steuergeräte nicht mit der Weiterleitung. Im Diagnosebereich wird der CAN-Bus für die Übermittlung der Zustände und Fehlerspeicher genutzt, sowie für die Flash-Programmierung der Steuergeräte.
  3. In großen Netzen findet man oftmals eine Struktur, die sich aus mehreren verschiedenen Topologien zusammensetzt.
  4. Eine Netzwerkstruktur ist genau dann physikalisch, wenn durch sie der Aufbau der Netzverkabelung beschrieben wird. Hier finden sich die meisten unterschiedlichen Anordnungen
  5. ante Bit eines der beiden das entsprechend rezessive des anderen, was dieser erkennt und seinen Übertragungsversuch beendet. Verwenden beide Teilnehmer den gleichen Identifier, wird nicht sofort ein Error-Frame erzeugt (siehe Frame-Aufbau), sondern erst bei einer Kollision innerhalb der restlichen Bits, was durch die Arbitrierung ausgeschlossen sein sollte. Daher empfiehlt der Standard, dass ein Identifier auch nur von maximal einem Teilnehmer verwendet werden soll.
  6. Lineare Topologie; Die Teilnehmer sind durch kurze Stichleitungen mit einer Hauptleitung verbunden. Jede Kommunikation läuft über diese Hauptlinie. Wird diese unterbrochen, so entstehen zwei Segmente, die meist noch funktionsfähig bleiben. Diese lineare Topologie wird auch Bustopologie genannt
  7. diese beschreibt den Datenfluss zwischen den Endgeräten und gibt an, welche Topologie, nach dem logischen Gedankengang, vorliegen muss.

Access Denie

  1. Komfort, Display, Karosserie Über diesen (Low-Speed-CAN) Bus kommunizieren z.B. Steuergeräte für Beleuchtung, Klimaanlage, Verriegelung und Armaturen. Hier ist eine Übertragung wichtiger Daten bei nicht so hoher Geschwindigkeit wichtig (z.B. K-CAN, Karosserie-CAN, Komfort-CAN). Der Bus muss trotzdem ausfallsicher und robust sein. Daher arbeitet er im Kfz meist nach dem fehlertoleranten Standard ISO 11989-3. CAN C  < 1 MBit / s
  2. Sollte ein Teilnehmer kontinuierlich Nachrichten mit einer hohen Priorität versenden, kann dies zur Blockade des Busses führen, da die Nachrichten der anderen Teilnehmer jeweils die Arbitrierung verlieren. Dieses Verhalten wird als Babbling idiot beschrieben. Sollte dieses Verhalten auf einer Fehlfunktion basieren, kann es nur durch zusätzliche Hardware – sogenannte Buswächter (Bus Guardians) – gelöst werden.[1]
  3. Der Verbindungsaufbau in Form eines Baums kann neben der herkömmlichen Anordnung auch noch als K-Baum, Fetter Baum und Ringerweiterter Baum auftreten. Am häufigsten finden sich Netzwerke, die eine Topologie in Stern-, Ring-, Bus-, Baum- oder Punkt-zu-Punkt-Form aufweisen. Bei dem vermaschten Netz sind die Endgeräte alle miteinander verbunden, sodass die Datenübertragung bei einem Ausfall eines einzelnen Endgeräts über eine andere Verknüpfung umgeleitet wird.
  4. Topologie (altgriechisch τόπος tópos, deutsch ‚Ort' und -logie) bezeichnet: . Naturwissenschaften: Topologie (Geographie), die Lagebeziehungen zwischen Geoobjekten Topologie (Mathematik), Teilgebiet der Mathematik die Struktur eines mathematischen Raums, siehe Topologischer Raum; in der Physik spielen topologische Eigenschaften für topologische Isolatoren und topologischer.
  5. In einem vermaschten Netz ist jedes Endgerät mit einem oder mehreren anderen Endgeräten verbunden. Wenn jeder Teilnehmer mit jedem anderen Teilnehmer verbunden ist, spricht man von einem vollständig vermaschten Netz.
  6. CAN-Protokolle haben sich in verschiedenen, vor allem sicherheitsrelevanten Bereichen etabliert, bei denen es auf hohe Datensicherheit ankommt. Beispiele:
  7. EnergyBus ist ein Kommunikations- und Energieübertragungs-Bus und dazugehöriges Steckersystem für Leicht-Elektrofahrzeuge wie Pedelecs und E-Bikes. EnergyBus wird von einem eingetragenen Verein, dem EnergyBus e.V. mit Sitz in Tanna gemeinsam mit dem CAN in Automation e.V. spezifiziert. Mitglieder sind sowohl Einzelpersonen wie auch Hersteller von Steckern, Batterien, Steuerungen und Antriebseinheiten (darunter Bosch, Panasonic, Sanyo, Deutsche Bahn AG, Philips und Varta).[6]

CANopen ist ein auf CAN basierendes Schicht-7-Kommunikationsprotokoll, welches anfänglich in der Automatisierungstechnik verwendet wurde, mittlerweile aber vorwiegend in Embedded Systemen eingesetzt wird. Alle Systembausteine finden eine Position innerhalb des ISO/OSI-Referenzmodells. Hierbei handelt es sich um ein standardisiertes Kommunikationsmodell, welches aus sieben verschiedenen Schichten besteht, die aufeinander zugreifen können. Die Schicht 1 wird im Falle der Systembausteine durch den sogenannten Repeater belegt. Der Repeater hat die Funktion inne, Bussysteme miteinander zu verbinden, um ein Signal entweder aufzubereiten oder zu verstärken. Auch die Bridge, der Router und der Gateway sorgen für Verbindungen bei Bussystemen.In der Landwirtschaft und Kommunaltechnik kommt der ISOBUS (ISO 11783), der eine Erweiterung des J1939 darstellt, zur Steuerung und Überwachung von Anbaugeräten zum Einsatz. Ein Overload-Frame, verursacht aufgrund des ersten Falls, darf nur im ersten Bitintervall einer erwarteten Sendepause erzeugt werden, während ein Overload-Frame, bedingt durch Fall 2, einen Takt nach der Erkennung des dominanten Bits gesendet wird. DeviceNet ist ein auf CAN basierendes Schicht-7-Kommunikationsprotokoll, welches hauptsächlich in der Automatisierungstechnik verwendet wird.

Ein Hybridelektrokraftfahrzeug (englisch Hybrid Electric Vehicle, HEV), gemäß EU-Richtlinie kurz Hybridelektrofahrzeug, ugs. auch Hybridfahrzeug oder Hybridauto, akademisch Fahrzeug mit Hybridantrieb, ist ein Elektrofahrzeug, das von mindestens einem Elektromotor sowie einem weiteren Energiewandler angetrieben wird und Energie sowohl aus seinem elektrischen Speicher als auch einem. Die Zell-Topologie findet sich besonders bei drahtlosen Netzwerken, wobei hier die Zelle den Bereich um die Basisstation definiert und in welchem es möglich ist eine Kommunikation zwischen den Endgeräten und der Basisstation aufzubauen. Pin-Belegung an  der Diagnosesteckdose (SAE 1962) Pinbelegung:  2+10 Datenübertragung nach SAE J 1850 (USA) ISO 9141-2 (Europa), 4+5 Fahrzeugmasse und Signalmasse, 6+14 Datenübertragung CAN High und Low, 7+15 Datenübertragung nach ISO 9141-2 (Europa) auch K und L Ausgang, 16 Batterie Plus (Kl. 15 oder 30)Bei einer symmetrischen Topologie sieht das Netz von jedem Betrachtungspunkt (Knoten/Links) gleich aus, d. h., es existieren für Knoten und/oder Kanten sogenannte Graphen-Automorphismen. Einfach gesprochen heißt dies, dass sich Knoten und/oder Links in einem symmetrischen Netz gleich verhalten, egal welchen Knoten oder welchen Link man betrachtet. Dies hat äußerst positive Auswirkungen (Vereinfachung) auf die Programmierung, die Lastverteilung und das Routing, da es keine Spezialfälle zu betrachten gibt.

Der k-Baum ist soweit ein klassischer Baum, von jeder Wurzel gehen aber k Kanten aus. Dadurch kann man z. B. im Vergleich zu binären Bäumen eine geringere Tiefe und somit geringere Latenzzeiten erreichen. Nachteilig ist allerdings die höhere Komplexität der Wurzelelemente (Grad k). Das Bussystem dient der Kommunikation zwischen den Teilnehmern einer Topologie und somit der Datenübertragung. Aber auch das Auffinden und Ausschalten von Fehlern gehört zum Funktionsspektrum eines Bussystems. Dementsprechend gibt es auch feste Systembausteine, die bei jedem Versenden und Empfangen einer Botschaft zum Tragen kommen. Dabei handelt es sich um folgende vier Bestandteile

Mögliche Topologien und notwendige Systembausteine beim

  1. Wenn das Übertragungsmedium eines Busses ein Shared Medium ist – also z. B. dieselbe Kupferader von allen Teilnehmern gemeinsam zur Datenübertragung verwendet wird – muss sichergestellt werden, dass immer nur ein Gerät zum selben Zeitpunkt Signale auf das Übertragungsmedium sendet. Dies kann durch eine zentrale Steuerung, den sogenannten Bus-Arbiter geregelt werden. Bevor ein Gerät senden darf, muss es über eine separate Leitung eine entsprechende Anfrage an den Bus-Arbiter stellen.
  2. The Grid von Rexel Community-Website verwendet Cookies, um personalisierte Funktionalitäten zu liefern Ihre Erfahrung zu verbessern. Die fortgesetzte Nutzung dieser Website zeigt an, dass diese Richtlinie zu übernehmen . Wollen Sie mehr wissen? Lesen Sie, wie wir Cookies in unserer Nutzungsbedingungen
  3. An jedem Leitungsende sollte sich ein Abschlusswiderstand von 120 Ohm befinden. Für einen einzelnen CAN-Bus-Teilnehmer an einer Stichleitung wirkt dies genauso wie ein einzelner 60-Ohm-Widerstand, der am Ort der Abzweigung eingefügt ist. Dieser Wert ist die zentrale Impedanz einer Sternarchitektur.

Die Bridge dient der Weiterleitung von Botschaften, ohne dabei eine explizite Adressierung vorzunehmen. Dieser Systembaustein wird der zweiten Schicht zugeordnet. Der Router bezieht sich auf Schicht 3 im OSI-Modell, wobei hier die Funktion einer gerichteten Weiterleitung erfüllt wird. Die anwendungsorientierten Schichten, also Schicht 5-7, übernimmt das Gateway, welches Verbindungen im Bussystem aufstellt zum Zwecke der Adresswandlung, Geschwindigkeitswandlung und Protokollwandlung.Bei der Vernetzung in Ring-Topologie werden jeweils zwei Teilnehmer über Zweipunktverbindungen miteinander verbunden, so dass ein geschlossener Ring entsteht. Die zu übertragende Information wird von Teilnehmer zu Teilnehmer weitergeleitet, bis sie ihren Bestimmungsort erreicht. Um Überschneidungen zu verhindern, sind bei dieser Art der Vernetzung besondere Adressierungsverfahren nötig. Da jeder Teilnehmer gleichzeitig als Repeater wirken kann (wenn keine Splitter eingesetzt werden), können auf diese Art große Entfernungen überbrückt werden (bei Verwendung von Lichtwellenleitern (LWL) im Kilometerbereich). Die Kenntnis der Topologie eines Netzes ist außerdem nützlich zur Bewertung seiner Performance sowie notwendig für eine Investitionsplanung und für die Auswahl geeigneter Hardware.

GradBearbeiten Quelltext bearbeiten

Einige Teilnehmer finden diese Informationen interessant und werden sie nutzen. Andere Teilnehmer wiederum nicht. Dadurch können komplexe Systemfunktionen erreicht werden, wie z.B. bei Schaltvorgängen eines automatischen Getriebes. Der CAN  ist ein 2-Draht-Bussystem (Twisted Pair) und kann trotz des einfachen Aufbaus sehr große Netzwerke mit bis zu 100 Steuergeräten bilden. Die Datenübertragung erfolgt seriell in Datenpaketen, deren Aufbau standardisiert ist. Die Vorgänge bei der Übertragung, der Fehlersicherung, der Fehlerkorrektur und der Bestätigung sind genau festgelegt und in der CAN-Spezifikation (Bosch) beschrieben.Es wird zwischen einem Highspeed-Bus mit einer Datenrate von bis zu 1 Mbit/s und einem Lowspeed-Bus mit bis zu 125 kbit/s unterschieden. Diese Raten gelten jedoch nur bei Leitungslängen bis zu 40 m. Darüber hängt die maximal zulässige Datenrate von der Leitungslänge ab. Mit niedrigeren Datenraten sind längere Leitungen möglich: Bei 500 kbit/s bis zu 100 m und bei 125 kbit/s bis zu 500 m. Die Liste der Objekt-Identifier einschließlich Sender und Empfänger ist Bestandteil der sog. Kommunikationsmatrix oder K-Matrix. Der Diagnose-CAN nutzt eine ungeschirmte verdrillte Zweidrahtleitung mit einem Querschnitt von je 0,35 mm2. Die CAN-High-Leitung ist bei VW orange/violett, die CAN-Low-Leitung ist orange/braun. Die Datenübertragung erfolgt mit einer Übertragungsgeschwindigkeit von 500 KBit/s. 

CAN Bus Grundlagen - kfztech

  1. Bitfolgen mit mehr als fünf gleichen Bits werden im CAN-Protokoll für Steuerungszwecke z. B. „End of Frame“ benutzt. Es dürfen also innerhalb des CAN-Frames nicht mehr als fünf Bits mit dem gleichen Pegel hintereinander vorkommen. Um dies zu verhindern, wird nach fünf Bits mit dem gleichen Pegel ein Bit mit dem inversen Pegel eingefügt. Dieses Bit nennt man „Stopf-Bit“ oder „stuff bit“. Das Bild zeigt den gleichen CAN-Frame vor und nach dem Einfügen von Stopf-Bits. Die Stopfbits sind lila eingefärbt. Bitstopfen (bit stuffing) kann die physische Länge eines Frames vergrößern. Bit stuffing wirkt auf Start of frame (SOF) bis einschließlich Prüfsummenfeld (CRC) von Daten- sowie Remote-Frames und dient der Nachsynchronisation der Teilnehmer innerhalb eines Frames.
  2. Quelle: VW / Anmerkung: Die Zeitangabe von 2 us ist falsch. Der CAN-Komfort arbeitet mit 100 kbit/s
  3. Das Kommunikationsprotokoll ist im CANopen-Applikationsprofil 454 "energy management systems" definiert.
  4. Eine Sonderform der Ringtopologie ist die Linientopologie, die als ein „offener Ring“ betrachtet werden kann, d. h., der erste und der letzte Rechner sind nicht miteinander verbunden. Dieses System ist sehr einfach aufzubauen, aber auch sehr anfällig, da der Ausfall eines mittleren Teilnehmers das Netz in zwei getrennte Teilnetze spaltet, die nur noch in sich weiter Datenübertragung ermöglichen.

BisektionsweiteBearbeiten Quelltext bearbeiten

Erkennt ein Empfänger eine Fehlerbedingung, sendet er einen Error-Frame und veranlasst so alle Teilnehmer, den Frame zu verwerfen. Sollten andere Teilnehmer diese Fehlerbedingung erkannt haben, senden sie ihrerseits direkt im Anschluss ein weiteres Error-Frame. Damit wird eine weitere Sicherheitsfunktion des CAN-Protokolls möglich. Um zu vermeiden, dass einzelne Teilnehmer durch irrtümlich erkannte Fehlerbedingungen dauerhaft den Nachrichtentransport blockieren, enthält jeder Teilnehmer Fehlerzähler. Diese Zähler erlauben nach den Regeln der Spezifikation, einen fehlerhaft arbeitenden Teilnehmer in zwei Stufen des Betriebszustands vom Bus zu trennen, wenn er wiederholt Fehler erkennt, die andere Teilnehmer nicht erkennen, oder wiederholt fehlerhafte Frames versendet. Die Zustände nennen sich error active (normal), error passive (Teilnehmer darf nur noch passive – das heißt rezessive – Error-Frames senden) und bus off (Teilnehmer darf nicht mehr senden). Der Grad einer Topologie gibt die Anzahl der Links pro Knoten an. Diese kann für jeden Knoten gleich oder verschieden sein. Haben alle Knoten einer Topologie den gleichen Grad, so ist die Topologie regulär, was sich vorteilhaft auf das Netzwerk auswirkt. Außerdem beschreibt der Grad indirekt, welche Kosten man zum Aufbau der Topologie aufbringen muss. Je höher der Grad, desto höher die Kosten. Die Konnektivität gibt die minimale Anzahl von Knoten oder Links (Kanten- bzw. Knotenkonnektivität) an, die durchtrennt werden müssen, damit das Netz als solches nicht mehr funktionstüchtig ist. Sie ist ein Maß für die Anzahl der unabhängigen Wege, die es zwischen zwei verschiedenen Knoten geben kann. Damit beschreibt sie auch die Ausfallsicherheit des Netzes, d. h. je höher die Konnektivität, desto ausfallsicherer ist das Netz. Zumeist werden verschiedene und unterschiedlich schnelle Bussysteme in einem Kfz eingesetzt. Der Antriebsbus (z.B. Powertrain-CAN) umfasst die Motor-, Getriebe- und Bremsen-Steuergeräte sowie weitere direkt damit zusammenhängende Sensoren/Aktoren. Er ist ein Highspeed-CAN. Über einen Komfort-CAN  oder einen Karosserie-CAN laufen Komfortsysteme wie Fensterheber, Sitzmemory oder Reifendruck. Einfache Anwendungen wie Klimaanlage oder Wischersteuerung nutzen häufigen einen Eindraht-Bus (LIN). Im Infotainmentbereich werden auf Grund der großen Datenmengen MOST Busse mit Lichtwellenleitern eingesetzt. In einem oder auch mehreren zentralen Modulen (Gateways) laufen die Informationen zusammen und werden auf das jeweilige Bussystem "abgestimmt". Die Daten werden auch von einem ins andere CAN-System weitergeleitet. Gateways können für Diagnosezwecke abgefragt werden. Der Durchmesser einer Topologie beschreibt die maximale direkte Entfernung zwischen zwei Knoten in Hops. Damit ist er ein direktes Maß für die zu erwartenden maximalen Transferzeiten, d. h. je größer der Durchmesser, desto größer die Transferzeit im ungünstigsten Fall.

Video: Controller Area Network - Wikipedi

Netztopologien (Bus-, Ring- und Stern-Topologie) - YouTub

SymmetrieBearbeiten Quelltext bearbeiten

DeviceNet ist vorwiegend in Amerika verbreitet. Es wurde von Allen-Bradley (gehört zu Rockwell Automation) entwickelt und später als offener Standard an die ODVA (Open DeviceNet Vendor Association) übergeben. Durch die schnelle Datenübertragung über CAN und durch das  Gateway selbst, ist das Diagnosegerät in der Lage, direkt nach Anschluss an das Fahrzeug einen Überblick über die verbauten Komponenten und deren Fehlerstatus anzuzeigen.

EO

Das erste Feld wird bestimmt durch die Überlagerung von ERROR FLAGS, die von den verschiedenen Stationen erzeugt werden können. Das folgende Feld ist der ERROR DELIMITER (8 rezessive Bits) . Bussysteme ermöglichen eine deutliche Reduzierung  von Kabeln und Steckern. Preis und Gewicht sinken dadurch.  Es entsteht eine Erweiterte Kommunikationsfähigkeit, die durch eine einfache Verkabelung nicht möglich wäre. Durch Diagnosekomponenten ist eine ständige Kontrolle vorhanden. Ein Protokoll erkennt Übertragungsfehler, die zum Beispiel aufgrund elektromagnetischer Einstrahlung entstehen können, und korrigiert sie automatisch durch Sendewiederholung. Sicherheit ist somit auch durch Redundanz gegeben. Modularisierung z.B. von Steuergeräten senkt ebenfalls den Preis, da Steuergeräte häufig nur entsprechend programmiert werden müssen.

Software für die Gewichtsoptimierung Eine Gewichtsklasse

Kennwerte[Bearbeiten Quelltext bearbeiten]

Physikalische Topologien[Bearbeiten Quelltext bearbeiten]

Spannungsänderungen auf den CAN-Leitungen bei Wechsel zwischen dominantem und rezessivem Zustand am Beispiel des CAN-Datenbus Antrieb: In diesem Video lernen Sie die Netztopologien (Bus, Ring und Stern) kennen Häufig sind elektrische/Signal-Topologie (OSI Schicht 1) und Anscheins-Topologie (wie die Kabel zu verlegen sind) nicht übereinstimmend.[1] Weitverbreitetes Beispiel ist 100-Mbit-Ethernet (100BASE-T mit Hub): Die Kabel werden in Sternform von den Endgeräten zum Hub geführt. Aus Sicht des Signalflusses ist das Netzwerk jedoch eine Bus-Topologie.

Logische Topologie[Bearbeiten Quelltext bearbeiten]

  1. anten Zustand steigt die Spannung auf der CAN-High-Leitung um
  2. NMEA 2000 ist eine Erweiterung von SAE J1939 für den maritimen Bereich. Das Protokoll der NMEA-Organisation breitet sich zunehmend aus. Vorgänger ist NMEA 0183. NMEA2000 ist ein IEC Standard: IEC61162-3.
  3. Diagnose (konventionell) Kfz mit CAN-Bus verfügen über ein ein Diagnosesystem. Solche Systeme lesen Fehlerspeicher aus und ermöglichen eine Stellglieddiagnose. Die Datenübertragungsgeschwindigkeit ist nicht so wichtig, da die Daten nur gelegentlich in der Werkstatt zu Wartungs- und Diagnosezwecken ausgelesen werden. Der Diagnoseanschluss (auch K-Leitung und L-Leitung genannt) muss aber robust und fehlertolerant sein. Bei neueren Fahrzeugen wird die Diagnose direkt an der eigentlichen Busleitung (CAN C) durchgeführt. CAN B < 125 kBit / s
  4. Beim Bus-System funktioniert die Datenübertragung ähnlich wie bei einer Telefonkonferenzschaltung. Im Kraftfahrzeug sind die einzelnen Steuergeräte miteinander vernetzt. Bei der Telefonkonferenz "spricht" ein Teilnehmer (Steuergerät) seine Informationen (Daten) in das Leitungsnetz hinein, während die anderen Teilnehmer diese Informationen "mithören" .
  5. Jörg Hellmich (ELFIN GmbH) ist der Vorsitzende dieser Arbeitsgruppe und betreibt unabhängig vom CiA ein Wiki der CANopen-Lift-Anwendergemeinschaft mit Inhalten zu CANopen Lift.
  6. Kennzeichnend sind die Punkt-zu-Punkt-Verbindungen zwischen den Teilnehmern. Alle Verbindungen sind zu einer geschlossenen Kette angeordnet. Die Kommunikation kann nur in einer Richtung erfolgen. Ein Befehl von Gerät A zum Gerät B muss meistens über ein anderes Gerät laufen. Fällt eine Teilstrecke aus, ist meist das gesamte System funktionslos. Über eine Diagnoseleitung kann der Fehler lokalisiert werden. z.B. Bei MOST Bussystem
  7. Das CAN-Netzwerk wird als Linienstruktur aufgebaut. Stichleitungen sind in eingeschränktem Umfang zulässig. Auch ein sternförmiger Bus (z. B. bei der Zentralverriegelung im Auto) ist möglich. Diese Varianten haben allerdings im Vergleich zum linienförmigen Bus Nachteile:
Netzwerk Grundlagen - Calis IT

Weblinks[Bearbeiten Quelltext bearbeiten]

CANopen wurde vorwiegend von deutschen klein- und mittelständischen Firmen initiiert und im Rahmen eines ESPRIT-Projektes unter Leitung von Bosch erarbeitet. Seit 1995 wird es von der CAN in Automation gepflegt und ist inzwischen als Europäische Norm EN 50325-4 standardisiert. Der Einsatz erfolgt vorwiegend in Europa, gefolgt von Asien. Wird im Ring generell in beide Richtungen kommuniziert, so führen die Teilnehmer meist Listen, zu welchem Zielgerät es in welche Drehrichtung „kürzer“ ist. Eine Ringunterbrechung kann dann als „unendlich“ für Zielgeräte markiert werden, die in eine Richtung nicht mehr erreichbar sind – womit automatisch die andere Drehrichtung gewählt wird. Datenübertragung Bits und Bytes   EVA-Prinzip Quellen: VW, BMW, Mercedes, Opel, Multiplikator Lehrgang, BTZ IngolstadtIm Falle von Kupferleitungen arbeitet der CAN-Bus mit zwei verdrillten Adern, CAN_HIGH und CAN_LOW (symmetrische Signalübertragung). CAN_GND (Masse) als dritte Ader ist optional, jedoch oft zusammen mit einer vierten Ader zur 5-V-Stromversorgung vorhanden.

Der Fette Baum oder englisch fat tree versucht das Problem der geringen Bisektionsweite zu lösen. Dies wird durch gesteigerte Bandbreite in Richtung Wurzel erreicht, etwa durch mehrere parallel verlaufende Links vom Wurzelknoten zu den unteren Ebenen. Dies behebt den Nachteil, dass die Wurzel des Baumes zum Flaschenhals werden kann, lässt den hohen Durchmesser eines Baumes jedoch unberührt. Bei höheren Datenraten (Highspeed-CAN) ist der Spannungshub zwischen den beiden Zuständen relativ gering: Im rezessiven Ruhezustand ist die Differenzspannung null (beide Adern etwa 2,5 V über Masse), im dominanten Zustand beträgt sie mindestens 2 V (CAN_HIGH > 3,5 V, CAN_LOW < 1,5 V). Hybride Topologien, auch als Mischtopologien bezeichnet, verwenden mindestens zwei Topologien in einem Netz.[2]

Literatur[Bearbeiten Quelltext bearbeiten]

Time-Triggered Communication on CAN setzt auf dem CAN-Bus auf und ermöglicht über höhere Protokollebenen eine Echtzeitsteuerung. TTCAN ist in ISO 11898-4 genormt. Der Acknowledge-Slot wird verwendet, um den Empfang eines korrekten CAN-Frames zu quittieren. Jeder Empfänger, der keinen Fehler feststellen konnte, setzt einen dominanten Pegel an der Stelle des ACK-Slots und überschreibt somit den rezessiven Pegel des Senders. Im Falle einer negativen Quittung (rezessiver Pegel) muss der fehlererkennende Knoten nach dem ACK-Delimiter ein Error-Flag auflegen, damit erstens der Sender vom Übertragungsfehler in Kenntnis gesetzt wird und zweitens, um netzweite Datenkonsistenz sicherzustellen. Wird der rezessive Pegel von einem Empfänger durch einen dominanten überschrieben, kann der Absender jedoch nicht davon ausgehen, dass das Telegramm von allen anderen Empfängern erhalten wurde. Der CAN-Bus arbeitet nach dem „Multi-Master-Prinzip“ d. h., er verbindet mehrere gleichberechtigte Steuergeräte. Ein CSMA/CR-Verfahren löst Kollisionen (gleichzeitiger Buszugriff) auf, ohne dass die gewinnende, höher priorisierte Nachricht beschädigt wird. Dazu sind die Bits – je nach Zustand – dominant bzw. rezessiv (ein dominantes Bit überschreibt ein rezessives). Die logische 1 ist rezessiv, kann sich auf dem Bus also nur durchsetzen, solange kein Teilnehmer logisch 0 sendet, logisch entspricht dies einer UND-Verknüpfung, obwohl bei Betrachtung einer der Leitungen für die Spannungspegel eine Wired-OR-Verknüpfung gilt. Die Daten sind NRZ-codiert, mit Bitstopfen zur fortlaufenden Synchronisierung auch von Busteilnehmern mit wenig stabilem Oszillator. Zur Datensicherung kommt zyklische Redundanzprüfung zum Einsatz. Der Bus ist entweder mit Kupferleitungen oder über Glasfaser ausgeführt. ARINC 825 ist ein internationaler Luftfahrt-Kommunikationsstandard, welcher in einer Technischen Arbeitsgruppe (bestehend aus mehreren Luftfahrtunternehmen, darunter Boeing und Airbus) auf der Basis von CANaerospace entwickelt wurde. Der CAN-Bus (Controller Area Network) ist ein serielles Bussystem und gehört zu den Feldbussen.. Er wurde 1983 vom Unternehmen Bosch entwickelt und 1986 zusammen mit Intel vorgestellt. Sein Zweck ist es, Kabelbäume zu reduzieren und hiermit Kosten und Gewicht zu sparen. Zur damaligen Zeit konnte die Gesamtlänge aller Kabel im Kraftfahrzeug ohne CAN bis zu 2 km betragen

Einzelnachweise[Bearbeiten Quelltext bearbeiten]

  1. Ein Stern-Bus-Netz entsteht, wenn verschiedene Verteiler jeweils das Zentrum eines Sterns bilden, diese Verteiler aber über ein Bus-Kabel miteinander verbunden sind. Diese Variante wurde früher oft für Gebäude mit mehreren Stockwerken eingesetzt, als noch Koaxial-Verkabelungen geläufig waren. Diese Technik wird seit Ende des 20. Jahrhunderts nicht mehr eingesetzt.
  2. elektrischer Kfz-Antriebssysteme abzuschätzen [7]. Dieser Beitrag beschreibt die Bordnetz-Topologie eines typischen hybridelektrischen Antriebssystems. Ein Ver-gleich der Eingangsimpedanz des Kabelbaums auf Sys-temebene mit der des Komponententests zeigt erhebliche Unterschiede, welche zu einem abweichenden EMV
  3. istisches Verhalten). Lediglich die maximale Sendeverzögerung für die höchstpriore Nachricht kann bei bekannter maximaler Nachrichtenlänge errechnet werden. Für niederpriore Nachrichten ist im Allgemeinen keine Aussage über den Sendezeitpunkt möglich.
  4. In Personenkraftwagen sehr verbreitet ist mittlerweile Unified Diagnostic Services gemäß der ISO 14229. In älteren Modellen verwendeten viele Hersteller eigene Standards, oft basierend auf der letztlich nicht standardisierten Norm für KWP on CAN (Normentwurf ISO/DIS 15765).

Die Bedeutung von Topologien

Baumtopologien sind dadurch gekennzeichnet, dass sie eine Wurzel (der erste bzw. obere Knoten) haben, von der eine oder mehrere Kanten (Links) ausgehen. Diese führen weiterhin zu einem Blatt (Endknoten) oder „rekursiv“ zu inneren Knoten von Teilbäumen („Wurzeln“ weiterer „Äste“; siehe auch Baum (Graphentheorie)). Die Baum-Topologie ist nah verwandt mit der Stern-Stern-Topologie, ggf. jedoch mit strengerer hierarchischer Ordnung. Hierbei müssen Verbindungen zwischen den Verteilern (Hub, Switch) mittels eines Uplinks hergestellt werden. Häufig wird diese Topologie in großen Gebäuden eingesetzt. Eine zentrale Steuerung ist aber gerade bei dynamischen Netzwerken wie Computernetzwerken oft unpraktikabel. Daher werden bei Netzwerken mit dezentraler Steuerung gleichzeitige Schreibzugriffe (Kollisionen) erkannt und die entstehenden Probleme aufgelöst. Ein oft benutztes Verfahren ist beispielsweise CSMA/CD.

FlexRay 2

Bei Netzen in Stern-Topologie sind an einen zentralen Teilnehmer alle anderen Teilnehmer mit einer Punkt-zu-Punkt-Verbindung angeschlossen (siehe auch Sterngraph). In Computernetzen kann es eine spezialisierte Einrichtung sein, zum Beispiel ein Switch. Auch das Netz einer Nebenstellenanlage ist gewöhnlich ein Sternnetz: Die Vermittlungsanlage ist der zentrale Knoten, an den jeder Teilnehmerapparat mit einer eigenen Leitung sternförmig angeschlossen ist. In jedem Fall bewirkt eine zentrale Komponente in einem Netz eine höhere Ausfallwahrscheinlichkeit für die einzelnen Verbindungen: ein Ausfall des zentralen Teilnehmers bewirkt unweigerlich den Ausfall aller Verbindungsmöglichkeiten zur gleichen Zeit. Eine geläufige Schutzmaßnahme bei Sternnetzen besteht darin, die zentrale Komponente zu doppeln (Redundanz). Die Topologie eines Rechnernetzes beschreibt die spezifische Anordnung der Geräte und Leitungen, die ein Rechnernetz bilden, über das die Computer untereinander verbunden sind und Daten austauschen. Ein Stern-Stern-Netz (auch Erweiterter Stern oder extended star) entsteht, wenn verschiedene Verteiler jeweils das Zentrum eines Sterns bilden und diese Verteiler wiederum über ein eigenes Kabel mit einem Verteiler verbunden sind. Diese Topologie ist heute die Standardverkabelung in Lokalen Netzen. Siehe hierzu Universelle Gebäudeverkabelung. Eine Baum-Topologie entspricht einem erweiterten Stern! Um diesen doch recht gravierenden Nachteilen entgegenzuwirken, werden in der Praxis eine Vielzahl von Baumvariationen verwendet.

2012 wurde von Bosch ein Vorschlag zur Erhöhung der verfügbaren Bandbreite namens CAN FD (Flexible Data Rate) vorgestellt.[2] Dies wird durch Verkürzung der Bit-Zeiten in der Datenphase und Vergrößerung des Datenfeldes auf bis zu 64 Byte erreicht. Insgesamt verspricht man sich zurzeit durch das „improved CAN“[3] genannte Verfahren einen bis zu 8-fach höheren Datendurchsatz. Das CAN-FD-Protokoll kann wie das Classical-CAN-Protokoll alle einfachen (single) Bitfehler erkennen. Außerdem werden mehrfache (multiple) Bitfehler mit einer noch höheren Wahrscheinlichkeit entdeckt. Es wird zwischen physikalischer und logischer Topologie unterschieden. Die physikalische Topologie beschreibt den Aufbau der Netzverkabelung; die logische Topologie den Datenfluss zwischen den Endgeräten.

Die physikalischen Topologien

Da die Datenbus-Leitungen auch im Motorraum verlegt sind, werden diese auch unterschiedlichen Störeinflüssen ausgesetzt. So sind Kurzschlüsse gegen Masse und Batteriespannung, Überschläge aus der Zündanlage und statische Entladungen bei der Wartung denkbar. Durch die Auswertung der Signale von CAN-High und CAN-Low im Differenzverstärker des Transceivers, werden über die sogenannte differenzielle Übertragungstechnik Einwirkungen von Störungen weitestgehend eliminiert. Ein weiterer Vorteil der differenziellen Übertragungstechnik liegt darin, dass auch Bordnetzschwankungen (z.B. beim Anlassen des Motors) sich nicht auf die Datenübertragung zu den einzelnen Steuergeräten (Übertragungssicherheit) auswirken. Elektronische Steuergeräte von Fensterheber, Zentralverriegelung und Co. verrichten ganz selbstverständlich ihren Dienst. Motor- und Getriebesteuerung, ABS, ESP, Airbag sorgen unersetzlich für Vortrieb und Sicherheit. Multimedia-Komponenten wie Navigationssystem, CD-Player oder Internet findet man nicht mehr nur in Oberklassemodellen wie bei Audi, BMW oder Mercedes. Dies ist aber alles nur möglich geworden, weil die moderne Elektronik Informationen untereinander austauscht. Er wurde 1983 vom Unternehmen Bosch entwickelt und 1986 zusammen mit Intel vorgestellt. Sein Zweck ist es, Kabelbäume zu reduzieren und hiermit Kosten und Gewicht zu sparen. Zur damaligen Zeit konnte die Gesamtlänge aller Kabel im Kraftfahrzeug ohne CAN bis zu 2 km betragen. Da bei einer herkömmlichen Verkabelung für jede Information je eine Leitung benötigt wird, steigt mit zunehmendem Funktionsumfang der Kfz-Elektronik die Länge und das Gewicht des Kabelbaumes sowie die Anschlüsse an den Steuergeräten. Abhilfe schafft hier der CAN-Bus, der sämtliche Informationen über lediglich zwei Leitungen überträgt. Datenbusse, auch CAN (Controlled Area Network) genannt, verbinden bis zu 100 verschiedene Steuermechanismen miteinander, die unter der Motorhaube eines Wagens zusammenspielen. Der CAN- Bus ist ein serieller Datenbus, der gleichberechtigte Stationen miteinander verbindet. CAN wird zur Vernetzung von Steuergeräten eingesetzt. Einfach ausgedrückt können sich die angeschlossenen Steuergeräte über die Leitungen „unterhalten“ und gegenseitig Informationen austauschen.

Aptiv-Lösung sichert Stromversorgung autonomer Fahrzeuge

Eine Arbeitsgruppe der CAN in Automation, die CANopen Special Interest Group (SIG) „Municipal Vehicles“, entwickelt das CANopen-Anwendungsprofil für Abfallsammelfahrzeuge : CleANopen (DIN EN 50325-4). Die Bisektionsweite gibt die minimale Anzahl von Links an, die durchgeschnitten werden müssen, um ein Netz mit N Knoten in zwei Netze mit jeweils N/2 Knoten zu teilen. Damit ist sie ein Maß für die Leistungsfähigkeit eines Netzes, da in vielen Algorithmen die Knoten der einen Netzhälfte mit den Knoten der anderen Hälfte kommunizieren. Je niedriger also die Bisektionsweite, desto ungünstiger wirkt sich dies auf den Zeitbedarf für den Datenaustausch zwischen beiden Netzhälften aus. Beim Zeitscheiben-Verfahren (Zeitmultiplex) senden die Rechner in einem starren Zeitraster auf dem geteilten Medium. Jeder Rechner darf nur ein kurzes Zeitintervall zum Senden nutzen, danach darf der nächste Rechner senden. Ein ringerweiterter Baum ist ein normaler Binär- oder k-Baum, dessen Blätter jedoch auf jeweils der gleichen Ebene zu einem Ring gekoppelt wurden (sog. horizontale Ringe). Dabei kann man entweder die Blätter aller Ebenen zu Ringen koppeln, oder nur die bestimmter (meist tiefer gelegenen) Ebenen. Dies führt zu einer Entlastung der Wurzelelemente oberer Ebenen, da Knoten einer Ebene jetzt quasi lokal kommunizieren können, ohne vorher ein paar Ebenen aufwärts und dann wieder abwärts gehen zu müssen. In der Praxis koppelt man in der Regel nur einige Knoten einer Ebene (z. B. die beiden äußersten und die mittleren), zu einem sog. unterbrochenen Ring. Dieser hat hier den Vorteil, dass er weniger aufwändig als ein vollständiger Ring ist, dabei aber tlw. noch oben genannte Vorteile bietet. Er ist quasi eine Kompromisslösung.

100%-Prüfung von Lenkungskomponenten | STEMMER IMAGING

Ein Überblick über die typischsten Topologien

Mögliche Topologien und notwendige Systembausteine beim Bus. Das Bussystem dient der Kommunikation zwischen den Teilnehmern einer Topologie und somit der Datenübertragung. Aber auch das Auffinden und Ausschalten von Fehlern gehört zum Funktionsspektrum eines Bussystems Bei Ausfall eines Endgerätes oder einer Leitung ist es im Regelfall möglich, durch Umleiten (Routing) der Daten weiter zu kommunizieren. Zudem kann durch die Kenntnis über die jeweilige Topologie auch ein Rückschluss über die Performance und die notwendigen Investitionen sowie die am besten geeignete Hardware gezogen werden. Topologien treten in vielen verschiedenen Verknüpfungsmustern auf, doch können unter zwei Oberkategorien zusammengetragen werdenEine grundlegende Topologie ist die Punkt-zu-Punkt-Topologie oder Zweipunkttopologie. Sie kommt zu Stande, wenn zwei Knoten direkt miteinander verbunden werden. Alle komplexeren Topologien, die kein Shared Medium verwenden, basieren auf diesem einfachen Konstruktionsprinzip. Zweipunkttopologien gehören wegen der Direktverbindung zu den leistungsfähigsten Konstrukten. Direkte Verwendung als eigenständige Topologie ist z. B. im Bereich von Fibre-Channel-Netzen.

Im Falle eines „Extended Identifiers“ (siehe oben) wird das RTR-Bit durch das SRR-Bit (Substitute Remote Request) ersetzt und ebenfalls rezessiv gesendet. In diesem Fall wird das nachfolgende IDE-Bit ebenfalls rezessiv gesendet, wodurch ein „Extended Identifier“ signalisiert wird. Im Anschluss werden die restlichen 18 Bit des Identifiers und anschließend das eigentliche RTR-Bit gesendet. Das IDE-Bit zählt dabei logisch zum „Arbitrierungsfeld“, wobei das Kontrollfeld aber weiterhin aus 6 Bit besteht. Der Overload-Frame ist eine Zwangspause zwischen Daten- und Remote-Frames. Er beinhaltet zwei Felder: Overload Flag und Overload Delimiter.

Eine 2001 gegründete Arbeitsgruppe der CAN in Automation, die CANopen Special Interest Group (SIG) „Lift Control“, entwickelt das CANopen-Anwendungsprofil (CANopen CiA-417) für Aufzüge. Die erste Version von CiA 417 wurde im Sommer 2003 veröffentlicht. Die Version 2.0 steht seit Februar 2010 auf der CiA-Webseite frei zur Verfügung. Die Arbeitsgruppe arbeitet an der Erweiterung des CANopen-Lift-Funktionsumfangs, verfeinert technische Inhalte und sorgt um die Einhaltung aktueller, gesetzlich vorgeschriebener Normen für Aufzüge in CiA-417. Die Version 2.1.0 ist im Juli 2012 und die Version 2.2.0 (verfügbar für CiA-Mitglieder) ist im Dezember 2015 als Draft Standard Proposal verabschiedet worden. Im Jahre 2016 wurde an der Version 2.3.0 (verfügbar für CiA-Mitglieder) gearbeitet. FireCAN wurde durch Zusammenarbeit österreichischer und deutscher Feuerwehraufbauhersteller im Jahr 2006 gegründet und ist mittlerweile als Norm DIN 14700 vorhanden. Ursprünglich wurde FireCAN als freie Übereinkunft der wesentlichen am Markt befindlichen Hersteller, die redaktionelle Betreuung der gemeinsamen Spezifikation wird dabei durch die Firma Rosenbauer ausgeübt. Die Vorstellung erfolgte im Zuge der DIN-Sitzung des Ausschusses NA 031-02-02 AA „Elektrische Betriebsmittel“ am 29. Oktober 2009 in Berlin. Diese Datenbusfestlegung basiert auf einem vereinfachten CANopen-Standard und regelt sowohl die physischen Eigenschaften (Stecker, Leitungen, Anschlussbelegung), die Art und Anzahl der Teilnehmer, sowie die verwendeten Datenformate und Dateninhalte. Als wesentlicher Vorgänger ist der in der Landwirtschaft erfolgreich eingeführte ISOBUS zu verstehen.[7] Beim für größere Distanzen geeigneten Lowspeed-CAN kommt ein Spannungshub von 7 V zum Einsatz, indem die rezessiven Ruhepegel auf 5 V (CAN_LOW) und 0 V (CAN_HIGH) gelegt sind. Bei Ausfall einer der beiden Leitungen kann die Spannung der anderen Leitung gegen Masse ausgewertet werden. Bei langsameren Bussen („Komfort-Bus“ z. B. zur Betätigung von Elementen durch den Benutzer) kann ein Eindrahtsystem mit der Karosserie als Masse deshalb reichen. Praktisch wird es meistens doch als Zweidrahtsystem ausgeführt, verwendet aber im Fall eines Aderbruchs den Eindrahtbetrieb als Rückfallebene, um den Betrieb weiterführen zu können. Das nennt sich dann „Limp-Home-Modus“ (Deutsch: „nach-Hause-humpeln-Modus“).

Steca Inselwechselrichter Grid Coolcept³ 3203 3200W - 230

Hier gibt es einen zentralen Knotenpunkt, an dem alle Teilnehmer angeschlossen sind. Jeder Teilnehmer hat seine eigene Leitung. Fällt der zentrale Punkt aus, so bricht die gesamte Kommunikation zusammen. z.B. bei ByteflightIn der Theorie sieht man oft, dass die physikalische Ringstruktur dem logischen Aufbau folgt, um Leitungslängen und damit Kosten zu sparen, dies geschieht jedoch in der Regel auf Kosten der Flexibilität bei Erweiterungen.

Die nominale Datenübertragungsrate im Netzwerk muss allen Teilnehmern bekannt sein, ggf. durch automatische Detektion – CAN in Automation hat dazu eine Application-Note herausgegeben, CiA 801. Die Synchronisation auf den genauen Beginn einer Nachricht erfolgt mit dem Wechsel vom rezessiven Idle-Pegel des Busses zum dominanten Synchronisations-Bit, mit dem jede Nachricht beginnt. Jeder weitere Pegelwechsel von rezessiv zu dominant kann zur dynamischen Nachsynchronisierung der Empfänger verwendet werden. Die Nachsynchronisierung gleicht Phasenrauschen und -drift zwischen den lokalen Oszillatoren aus. Eine Nachsynchronisierung findet auch während der Arbitrierungsphase statt, wenn ein Sender eine Nachricht mit höherer Priorität zu senden beginnt. Dies bewirkt meist ebenfalls einen Phasensprung in Bezug zur vorherigen Nachricht. Die Skalierbarkeit gibt das kleinste Netzinkrement (Anzahl von Knoten und Links) an, um das man eine Topologie erweitern kann, um vertretbaren Aufwand, keine Leistungseinbußen und die Beibehaltung topologietypischer Eigenschaften nach der Erweiterung zu garantieren.

  • Dubai Wetter September.
  • Zulu krieg film.
  • Fischgerichte mit gemüse.
  • Tag der deutschen einheit feiertag nrw.
  • Vanilleeis mit tonkabohne.
  • Bitkom studie cybercrime.
  • Caspar david friedrich persönlichkeit.
  • Amazon prime photos test.
  • Ikea vorhänge kinderzimmer.
  • Lignano pineta.
  • Swiss express. ch live.
  • Bianchi cafe lunchbuffe.
  • Skyrim PS4 Mods 2019.
  • Der Mönch am Meer.
  • Grenadill messergriff.
  • Netflix original series.
  • Minecraft für psp download kostenlos.
  • Ukrainische tv sender über internet.
  • Garderobe job leipzig.
  • Silvercrest rt 2000 bedienungsanleitung.
  • Nocni voz beograd bar.
  • Birkhuhn bayern.
  • Fhp motors schaltplan.
  • Sänger mit gitarre buchen berlin.
  • Keirsey temperaments.
  • Tattoo arten wikipedia.
  • D1 raid report.
  • Magic ring häkeln video.
  • Wohnung mieten Olympiapark München.
  • Omguard hd für pc chip.
  • تردد قناة nbn hd.
  • Fashion nova gift card.
  • Weinbau spritzmittel.
  • Buildcraft pipe redstone.
  • Meldepflicht für besucher aus dem ausland.
  • Unternehmer werden.
  • Kroatische lebensmittel.
  • Urge overkill girl you'll be a woman soon.
  • Mdr klassik app.
  • Weltbild retourenschein download.
  • Schifffahrt veitshöchheim würzburg fahrplan.